
ICES Journal of Marine Science, 2022, 0, 1–12
DOI: 10.1093/icesjms/fsac219
Original Article

Predicting bycatch of Chinook salmon in the Pacific hake

fishery using spatiotemporal models
Philip L. Shirk1,*, Kate Richerson 2, Michael Banks1 and Vanessa Tuttle3

1The Cooperative Institute for Marine Resources Studies, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science
Drive Newport, OR 97365, USA
2Northwest Fisheries Science Center, Newport Research Station, National Marine Fisheries Service, National Oceanic and Atmospheric
Administration, 2032 SE OSU Drive Newport, OR 97365, USA
3Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake
Blvd E, Seattle, WA 98112, USA
*Corresponding author: tel: +1-541-867-0100; e-mail: philip.shirk@gmail.com.

Fisheries bycatch is a global problem, and the ability to avoid incidental catch of non-target species is important to fishermen, managers, and
conservationists. In areas with sufficient data, spatiotemporal models have been used to identify times and locations with high bycatch risk,
potentially enabling fishing operations to shift their effort in response to the dynamic ocean landscape. Here, we use 18 years of observer data
from the Pacific hake (Merluccius productus) fishery, the largest by tonnage on the US West Coast, to evaluate our ability to predict bycatch
of the commercially, culturally, and ecologically important Chinook salmon (Oncorhynchus tshawytscha). Using multiple approaches (regression
models, tree-based methods, and model averages), we tested our ability to predict bycatch at weekly and yearly timescales and found that
spatiotemporal models can have good predictive ability. Gradient boosting trees (GBTs) and model averages typically had higher performance,
while generalized linear models and generalized additive models (without interaction terms) did less well. Using a GBT model to remove 1% of
hauls with the highest predicted bycatch reduced the bycatch-to-hake ratio by 20%. Our results indicate that spatiotemporal models may be a
useful forecasting tool that can help fishing operations avoid bycatch while minimizing losses from target catches.
Keywords: bycatch, Chinook salmon, fisheries observer data, hake, predictive modelling, whiting.

Introduction

Bycatch, or the incidental capture of non-target individuals,
presents an ongoing challenge for fishery management and
conservation. Globally, bycatch represents a significant pro-
portion of total catch (∼10% in recent decades; Zeller et al.,
2018) and threatens many rare and ecologically important
species (Lewison et al., 2014). In response to the economic
and ecological costs of bycatch, many countries have imple-
mented policies to reduce incidental take and discards, includ-
ing landing obligations, closed areas or seasons, bycatch caps,
and gear modifications. In the United States, federal law re-
quires that bycatch and bycatch mortality be minimized to
the extent practicable, and fisheries management plans must
establish a standardized reporting methodology to assess by-
catch. Accounting for bycatch is a key part of ecosystem-based
fishery management, which requires considering both the di-
rect and indirect impacts of fishery operations on target and
non-target species (Gilman et al., 2014).

A key factor limiting our understanding of bycatch and
its effects is a lack of data (Komoroske and Lewison, 2015).
However, the Pacific Coast groundfish fishery on the US West
Coast offers a unique opportunity to investigate bycatch be-
cause all sectors are subject to observer or electronic moni-
toring. One of the species regulated under the Pacific Coast
groundfish fishery, Pacific hake (Merluccius productus, also
called Pacific whiting), is one of the largest fisheries by ton-
nage on the US West Coast, with landings averaging 258000
tonnes over the past 10 years and a total economic impact of

$279 million in 2018. The stock is managed through the bi-
lateral Pacific Whiting Agreement between the United States
and Canada, which allocates an annual quota across the two
countries. The US hake fishery also has room to grow, as it has
averaged only 75% attainment of the target catch over the last
10 years (Johnson et al., 2021). Though the ratio of bycatch to
hake in this fishery is overall relatively low (typically <2%),
the fishery regularly encounters species of concern, and the
high-volume nature of the fishery means that the total inci-
dental catch may be significant. Since 2002, the hake fishery
has accounted for approximately two-thirds of the total ob-
served bycatch of salmon off the US West Coast (Richerson et
al., 2020). Regulations prevent salmon caught as bycatch from
being sold commercially or otherwise retained for human con-
sumption, though they may be donated to food banks. All
vessels targeting hake in the US carry scientific observers or
electronic monitoring equipment, so virtually all catches are
sampled and any bycatch is recorded.

Bycatch of Chinook salmon (Oncorhynchus tshawytscha;
hereafter Chinook) presents a particular management and
conservation challenge because Chinook are culturally, eco-
nomically, and ecologically important. In addition to being
the subject of valuable commercial and recreational fisheries,
nine Chinook populations are listed as threatened or endan-
gered under the United States Endangered Species Act, and
many runs are expected to face additional challenges as ma-
rine and freshwater conditions continue to change (Muñoz et
al., 2015; Shelton et al., 2020). The west coast directed ocean
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Chinook fisheries have faced sharply restricted seasons in re-
cent decades in order to protect stocks with low predicted re-
turns, and multiple federal fisheries disasters have been de-
clared due to low Chinook availability. Consequently, inci-
dental catch of Chinook in other fisheries is subject to close
scrutiny, and has led to a number of management measures
and voluntary industry-led bycatch avoidance practices.

Efforts to minimize bycatch in the hake fishery include fleet
communication measures, bycatch quotas, and a catch-share
programme (Holland and Martin, 2019). The three sectors
targeting hake (motherships, catcher-processors, and shore-
side) each have a set of strategies and agreements for avoid-
ing bycatch. The mothership sector formed a cooperative in
2011 that has a number of internal rules, including bycatch
hotspot closures, restrictions on fishing at night, the use of test
tows, and the relocation of catcher vessels delivering to indi-
vidual motherships if bycatch rates exceed a threshold (Hol-
land and Martin, 2019). The catcher-processor sector also
formed a cooperative in 1997 and has internally agreed to
a number of bycatch avoidance techniques, though the extent
to which they use closed areas is less clear (Holland and Mar-
tin, 2019). In the shoreside sector, most vessels act as coop-
eratives and use a risk pool to manage the risk of exceeding
low quotas of bycatch species. This sector also uses a number
of bycatch avoidance methods, including information sharing,
night fishing restrictions, closed areas, and hotspot closures
(Holland and Martin, 2019). In all three sectors, the imple-
mentation of bycatch avoidance strategies is facilitated by Sea
State Inc., which analyses data from onboard observers to gen-
erate daily information on bycatch hotspots, cautionary areas,
and closed areas that is then disseminated to the fleet (Little et
al., 2015; Holland and Martin, 2019). The spatial distribution
of observed Chinook bycatch and hake catch rates is shown
in Figure 1.

Under the National Marine Fisheries Service’s (NMFS) bio-
logical opinion on take of salmon in the Pacific Coast ground-
fish fishery, a total take of 20000 Chinook is allowed for the
entire groundfish fishery (for comparison, the non-tribal tar-
geted ocean Chinook fishery landed ∼13000–900000 fish an-
nually between 2000 and 2020, with a generally declining
trend; PFMC, 2021). Of this incidental take amount, 11000
Chinook are apportioned to the hake fishery and 5500 to the
non-hake fishery, with a “reserve” of 3500 fish that can be ac-
cessed by either sector (Matson and Erickson, 2018). If the
threshold of 11000 fish is exceeded or projected to be ex-
ceeded, conservation measures like closed areas may be imple-
mented, and a complete closure of the fishery may occur under
certain circumstances (50 CFR § 660.60, 2022). Chinook by-
catch in the hake fishery has varied over time and exceeded
11000 individuals in 2005 and 2014 (Richerson et al., 2020),
with the latter resulting in a closure of the fishery shoreward
of the 100 fathom (183 m) depth contour. The interannual
variation in Chinook bycatch does not appear to be a direct
result of fluctuating ocean abundances, as bycatch does not
appear to be clearly linked to indices of Chinook abundance
(Matson and Erickson, 2018). Reducing bycatch could help
the hake fishery avoid closures and potentially facilitate an
expanded fishing effort to utilize more of the full target catch
of hake.

Efforts to model bycatch in fisheries have advanced consid-
erably in the past decade as spatiotemporal modelling options
have become more widely available (Ward et al., 2015; Otto
et al., 2016; Eguchi et al., 2017; Stock et al., 2019, 2020).

Figure 1. The spatial distribution of (a) observed Chinook salmon bycatch
per unit effort and (b) observed Pacific hake catches per unit effort,
2002–2020. To maintain confidentiality, any spatial cells containing data
from fewer than three vessels are not shown.

The explicit incorporation of spatial correlation in modelling
approaches is valuable because bycatch is often spatially cor-
related (Lewison et al., 2009). Models that account for spatial
correlation are typically more accurate than those that ignore
it (Dormann, 2007; Stock et al., 2019). A common method of
partially accounting for spatial correlation in marine fisheries
is to bin observations into grid cells or strata and work with
average values. However, binning discards information on the
fine-scale variation in the response and predictor variables,
and models based on binned data typically perform worse
than geostatistical models (Shelton et al., 2014; Thorson et al.,
2015). Spatial correlations in bycatch are also likely to change
over time, particularly as climate change alters environmental
conditions and species’ phenologies. In addition to improving
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model fit, the spatiotemporal patterns from models may be of
interest themselves. They can be used to identify hotspots of
bycatch, shifts in the distribution of bycatch, and unmodelled
covariates that may help to explain variation in bycatch.

Here, we use spatiotemporal models to investigate trends in
the bycatch of Chinook in the hake fishery and to test our abil-
ity to forecast future bycatch. In particular, we want to know
how predictable bycatch is at varying temporal scales and to
identify correlates of bycatch that are useful in predicting by-
catch risk. A better understanding of Chinook bycatch across
space and time may help inform bycatch avoidance and man-
agement measures, as well as increase the ability of the fishery
to maximize the catch of hake.

Methods

Data

Our analysis focuses on the US West Coast limited-entry hake
fishery, which is responsible for the vast majority of hake
catches (Somers et al., 2020; Johnson et al., 2021). Within
the limited entry fishery are three sectors: at-sea catcher-
processors, at-sea motherships (with their catcher vessels), and
shore-based catcher vessels (Warlick et al., 2018). The two
at-sea sectors are monitored through the At-Sea Hake Ob-
server Program (A-SHOP); the shore-side sector is monitored
through the West Coast Groundfish Observer Program (WC-
GOP) and the West Coast Region, National Marine Fisheries
Service. In recent years, many shoreside vessels have begun us-
ing electronic monitoring in lieu of at-sea observers; this moni-
toring programme is administered by the Pacific States Marine
Fisheries Commission. To avoid adding further complexity to
an already complex analysis, we do not include data from ves-
sels carrying electronic monitoring in this analysis. For a sum-
mary of observer coverage and electronic monitoring cover-
age in both the at-sea and shoreside sectors, see Somers et al.
(2020).

We used haul-level A-SHOP (n = 26674 catcher-processor
and n = 19050 mothership catcher vessel hauls) and WCGOP
(n = 7840 shoreside hauls) observer data from 2002 to 2019
to evaluate our ability to predict Chinook bycatch in the hake
fishery using spatiotemporal models. Though both the at-sea
and shoreside sectors target hake and carry observers or elec-
tronic monitoring, there are differences in fishing and data col-
lection methods across these sectors. All vessels in the at-sea
hake fishery carry two observers, and virtually all hauls are
sampled for species composition. Typically, 50% of each haul
is sampled by an on-board observer. In addition to informa-
tion on retained and discarded catch, data include informa-
tion on the time, duration, location, and depth of each haul.
For Chinook salmon, at-sea hake observers also collect bio-
logical data, including length, weight, sex, adipose fin status,
a tissue sample, and a coded-wire tag scan. Our analysis used
all recorded Chinook, regardless of adipose fin status (an indi-
cator of wild versus hatchery stock). Details on observer data
collection methods in the at-sea hake sectors can be found in
NWFSC (2021a).

In contrast to the at-sea sector, where hauls are sampled in-
dividually by on-board observers, the shoreside hake sector
is a maximized retention fishery. This means that, though all
vessels carry an observer or electronic monitoring equipment,
catch is not typically sorted at sea. Instead, bycatch is quan-
tified at the trip level after it is landed, and one trip typically

consists of 2–3 hauls. Although observers record haul infor-
mation (e.g. overall total catch; time; depth; location; dura-
tion); haul-level bycatch is typically estimated proportionally
to the observed retained catch of each haul after the catch is
sorted shoreside. In other words, the species composition of all
hauls within a trip is assumed to be the same. Biological data is
also collected shoreside by catch monitors. For details on ob-
server data collection methods in the shoreside hake fishery,
see NWFSC (2021b).

Models

We followed the general approach of Stock et al. (2020),
which includes the application of hurdle models (Cragg, 1971)
to account for the large number of zeros in the data and in-
corporates a spatial component in each model. Hurdle mod-
els consist of two component models: the first predicting the
probability that there was any bycatch, and the second pre-
dicting the amount of bycatch for hauls that contained by-
catch.

We fitted ten model structures to the data to predict whether
hauls contained bycatch (i.e. the first component of the hurdle
model) (Table 1). Additionally, we tested two model averages
for comparison because model averages often outperform in-
dividual component models in predictive capability (Dormann
et al., 2018). The ten models can be split into two categories:
those based on linear models and those based on decision
trees. The linear-based models include generalized linear mod-
els (GLM) and generalized additive models (GAM), both of
which assume a binomial distribution to predict the presence
of bycatch. Individual models differed in how they incorpo-
rated covariates (including latitude and longitude) (Table 1).
The 3D space–time spline smoother in GAM 3 (Wood, 2017)
was complicated by the way in which we performed cross-
validation. For all three methods of cross-validation (see be-
low for details), GAM 3 allowed the spatial smooth to vary
through time by creating a separate smoother in each year.
The complication for GAM 3 models is that independent 2D
spatial smooths for each year cannot be used to make pre-
dictions for years that were not represented in the training
dataset, which is precisely what the yearly time-series cross-
validation was designed to do. Therefore, GAM 3 models in
the yearly time series cross-validation included a 3D space–
time spline smoother where time was a continuous variable,
which allows extrapolation to years that were not in the train-
ing data. To maintain tractability, we reduced the dimension
of the basis of the two spatial terms in the spline (k = 40),
forcing the spatial smooth to vary more slowly through space.
The pseudocode for the model formulas can be found in
Table 1.

The tree-based models included random forests (RF) and
gradient boosted trees (GBT), both of which aggregate pre-
dictions across numerous individual decision trees. Random
forests average across component trees. GBT are fit sequen-
tially, with each additional tree fitting to the residuals of the
previous tree (Elith et al., 2008). For the first component of
the hurdle model, tree-based models used binomial classifica-
tion trees. In highly imbalanced datasets (few observations of
a particular class), decision trees may do a poor job of predict-
ing the rarer class (Chawla et al., 2004). We included two RFs
to account for imbalance in our dataset, which had four times
as many hauls without Chinook bycatch as with bycatch.
While RF 1 fit all hauls in the dataset, RF 2 subsampled an
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Predicting bycatch of Chinook salmon in the Pacific hake fishery using spatiotemporal models 5

equal number of observations from each class (hauls with and
without bycatch). This reduces the sample size for fitting each
tree. To avoid reducing sample size as much, RF 3 employs the
synthetic minority over-sampling technique (SMOTE; Chawla
et al., 2002) to artificially increase the number of hauls con-
taining bycatch and then also subsamples an equal number of
observations from each class. If imbalance in our dataset is
problematic, we expect RF 2 and RF 3 models to outperform
RF 1 and potentially the GBT models. If imbalance is not an
issue, then limiting the sample sizes and creating artificial data
may weaken the predictive accuracy of RF 2 and RF 3. Note
that because of the sampling methods used, RF 2 and RF 3 are
only applicable to classification.

Model GBT 1 employed a standard GBT, which can have
excellent predictive power but can also easily overfit the train-
ing data. GBT models are strongly influenced by trees near the
beginning of the sequence, while trees near the end of the se-
quence impact fewer data points and may be fitting the model
to noise in the data. One method to reduce overfitting in GBT
is to randomly drop individual trees via DART (Dropouts
meet Multiple Additive Regression Trees) (Rashmi and Gilad-
Bachrach, 2015). In DART, if no trees are dropped, the model
is identical to a standard GBT. If all trees are dropped, DART
is identical to a random forest. Model GBT 2 employed DART
with a dropout rate of 50%.

The second component of the hurdle model, predicting
abundance of bycatch in hauls that contained bycatch, in-
cluded the same models as the first (binomial) component
of the hurdle model, with the exception of RF 2 and RF 3,
which are only applicable to classification, not regression. Fur-
thermore, GLMs, GAMs, and the GBT models in the second
(abundance) component of the hurdle model implemented
gamma regression with a log link; tree-based models used re-
gression trees rather than classification trees.

For both components of the hurdle model, we calculated
the first model average (AVG 1) as the unweighted mean of
the predictions (on the response scale) of all models (ten for
the first/binomial component; eight for the second/abundance
component). We calculated the second model average in the
same way, except that we excluded model GAM 3 because
the definition of GAM 3 changes for models fit with yearly
time-series cross-validation and because some GAM 3 models
had very poor fit.

Response and predictor variables

We chose to model the number of Chinook as our response
variable. Ultimately, the number of Chinook and the amount
of hake are both relevant, but using the ratio between the two
is not necessarily the best solution for two reasons. First, co-
variates may influence Chinook and Hake populations differ-
ently. Second, if hake occur at low densities in an area without
Chinook, models of the Chinook-to-hake ratio would classify
the area as an ideal fishing location in spite of the high effort
that would be required to catch hake.

As predictor variables for Chinook bycatch, we included
haul and environmental characteristics. Haul characteristics
included fishing sector (at-sea catcher-processor; at-sea moth-
ership; shoreside); year; haul duration; day of year; time of
day; fishing depth; and location (latitude and longitude, pro-
jected to the USA Contiguous Equidistant Conic projection).
The characteristics of the hauls were included in the A-SHOP
and WCGOP data. We chose to include haul duration as a

covariate rather than an offset term because we did not want
to force a 1:1 relationship between duration and bycatch
(Stock et al., 2019). Environmental variables included ocean
depth, sea surface temperature (SST) anomaly, upwelling, and
bottom slope, all of which were interpolated to the location
and time of each haul. Justification for, and sources of, the
environmental variables are as follows:

Ocean depth is correlated with many variables that likely
influence the presence of hake and Chinook, including tem-
perature, light, predator and prey abundances, and the di-
rection and strength of currents. When available, we used
the bottom depth as measured by fishermen and recorded in
the A-SHOP data. When the bottom depth was not recorded
(as was the case for all 7840 hauls in the WCGOP dataset
and 74 of 45724 hauls in the A-SHOP dataset), we used
bathymetry data from the National Geophysical Data Cen-
ter’s US Coastal Relief Model (NOAA National Geophysical
Data Center, 2003a, b).

The slope of the seafloor is also an important component
of habitat for hake and their prey (Mackas et al., 1997). We
calculated the bottom slope from the bathymetry dataset using
the “terrain” function in the raster package (Hijmans, 2020)
for R.

Temperature is related to a host of biological processes
(Angilletta, 2009) and to species distributions (Stuart-Smith
et al., 2017). We use the SST anomaly (difference from the
1971 to 2000 mean) from the NOAA 1/4◦ daily Optimum
Interpolation SST V2 dataset (https://www.psl.noaa.gov/data/
gridded/data.noaa.oisst.v2.highres.html). Using temperature
anomalies (rather than absolute temperature) is common in
the marine sciences and has the advantage of removing sea-
sonal cycles. Sea surface temperature anomaly has also been
shown to be related to the marine distributions of both hake
(Malick et al., 2020) and Chinook (Shelton et al., 2020).

Upwelling alters a host of physical and biological charac-
teristics by bringing cool, nutrient-rich waters to the surface,
which supports abundant plant and animal life. Upwelling can
also influence the distributions of some fish (Sato et al., 2018).
We used the coastal upwelling transport index (CUTI) (Jacox
et al., 2018) as a metric of upwelling.

Model assessment

We performed cross-validation to assess the models’ pre-
dictive ability because forecasting bycatch may be a useful
management tool. Cross-validation splits the data into train-
ing and testing datasets. Each model was fit using only the
training data. Then each model’s predictive ability was as-
sessed by comparing the response values observed in the
testing dataset to those the model predicted for the testing
dataset. We performed three sets of cross-validation, repre-
senting three potential management scenarios. The first, k-
fold cross-validation, splits the dataset into an arbitrary num-
ber (k) of evenly sized subsets, or folds. We used tenfold
cross-validation. Each fold is successively held out as a test-
ing dataset while the model is fit to all other folds collec-
tively. The result is that testing data are randomly distributed
among training data along all covariate axes. Model predic-
tions are interpolations, not extrapolations to new covariate
spaces. The k-fold cross-validation represents a management
scenario where static regulations are implemented once and
apply in perpetuity. This is most appropriate in a static system
where relationships among predictor and response variables
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6 P. L. Shirk et al.

remain constant; however, this method may result in overly
optimistic model evaluations when the data are temporally
structured or have other internal dependence structures.

In order to account for the temporal structure in our
data and to test realistic predictive ability, we used blocked
time-series cross-validation for the second and third cross-
validations (Bergmeir and Benitez, 2012; Roberts et al., 2017).
The second cross-validation set we performed was time-series
cross-validation, in which each testing dataset consisted of all
hauls in the week immediately following the training dataset.
In other words, we trained the models on observations from
the block of time leading up to each week in the dataset, then
made predictions for that week, which we compared to the
true values. We refer to this set of cross-validation as weekly
cross-validation, and it essentially tests the model’s ability to
predict one week in the future based on observations prior to
that week. We excluded hauls in the first week of each fishing
season from the testing datasets because they did not imme-
diately follow the training dataset (the hake fishery is closed
from January to mid-May each year). We repeated weekly
cross-validation twice with different amounts of training data.
The two training datasets included all hauls that occurred be-
fore, but in the same year as, the testing dataset and an ad-
ditional 4 or 12 years of prior hauls. Because testing datasets
are always in the future of training datasets, model predic-
tions are always extrapolations along the time axis. Predict-
ing into the future also makes models more vulnerable to mis-
leading predictions if relationships among predictor and re-
sponse variables change through time. Because these models
made predictions into the future, they were fitted using 7-
day lagged measures of SST anomaly and CUTI (i.e. the pre-
diction of bycatch on 15 June 2018 used SST anomaly and
CUTI from 8 June 2018). This cross-validation method rep-
resents a management (or voluntary bycatch avoidance) sce-
nario with highly dynamic rules that change on a weekly ba-
sis and is most appropriate in a system that changes quickly
as well.

The third cross-validation set is also time-series cross-
validation, but with testing datasets comprised of all hauls
in the year immediately following the training dataset. In
other words, we trained the models on observations from
the block of time prior to each year in the dataset, then
made predictions for that year. We refer to this set as yearly
cross-validation. As with weekly cross-validation, we repeated
yearly cross-validation twice with different amounts of train-
ing data: either 4 or 12 years, and models used 1-year lagged
SST anomaly and CUTI (i.e. prediction of bycatch on 15 June
2018 used SST anomaly and CUTI from 15 June 2017). As
previously mentioned, yearly cross-validation required mod-
ification of the GAM 3. This cross-validation method repre-
sents a management scenario with annual updates to regula-
tions and is most appropriate in a system where regulations
are difficult to change quickly and/or systems change very
slowly and are predictable many months in advance.

We assessed models’ fit in each cross-validation set using the
area under the receiver operating curve (AUC) for binomial
classification models and the root mean square error (RMSE)
for models of abundance (both the second half of the hurdle
models and the full hurdle models). AUC ranges from 0 to 1
and represents the probability of correctly ranking a randomly
drawn positive case above a randomly drawn negative case. A
value of 1 represents perfect classification accuracy; a value
of 0.5 represents very poor classification accuracy. RMSE is a

very common metric of models’ predictive accuracy and is in
the same units as the response variable. RMSE weights over-
and under-estimates equally and is sensitive to outliers.

For each model type in each cross-validation set and each
length of the training dataset, we combined testing datasets
to get predicted bycatch presence for each haul other than
those in the first week of the fishing season each year, from
2014 to 2019. Predictions were limited to those years because
models trained with 12 years of training data did not make
predictions for any earlier years. We then calculated a single
AUC value for each combination of model, cross-validation
set, and training dataset. This allows for a direct comparison
among modelling approaches because AUC is calculated us-
ing exactly the same hauls. We calculated the RMSE for the
second half of the hurdle models similarly but used predicted
abundance rather than predicted presence and only included
the subset of hauls from 2014 to 2019 that contained bycatch.
We calculated RMSE for the full hurdle models using the same
hauls that we used to calculate AUC. In addition to calculating
AUC and RMSE across all predicted hauls, we also calculated
AUC and RMSE separately for each fold (for the k-fold cross-
validation), week (for the weekly cross-validation), and year
(for the yearly cross-validation). We then used Tukey’s hon-
estly significant difference (HSD) test to evaluate mean differ-
ences in the fold-, week-, or year-level metrics across models
(Stock et al., 2020). For the weekly cross-validation compari-
son, we removed the ∼5% of weeks that had <50 hauls, be-
cause AUC is poorly estimated for small sample sizes (Hanczar
et al., 2010).

Finally, to aid interpretation of each model’s predictive
ability, we calculated the reduction in bycatch that could be
achieved by removing hauls from the test data that the full
hurdle models predicted would contain the most bycatch. We
note that this estimate is overly optimistic because a more re-
alistic management scenario would be to relocate the fishing
effort rather than remove it entirely.

Code to download the publicly available data, run the mod-
els, perform cross-validation, and visualize results is avail-
able at https://github.com/kricherson-NOAA/hake-salmon-b
ycatch.

Results

Model performance

For both the binomial (Figure 2) and abundance (Figure 3)
components of the hurdle model, k-fold cross-validation re-
sulted in lower RMSE and higher AUC compared to weekly
and yearly cross-validation. For the full hurdle model, k-
fold cross-validation also generally resulted in lower RMSE
compared to the temporally blocked cross-validations (Figure
4). The further models predict into the future, the lower
their predictive ability. For k-fold cross-validation, more com-
plex linear-based models generally had a higher AUC and
a lower RMSE compared to simpler linear-based models.
This relationship largely holds for the weekly cross-validation
set but collapses for yearly cross-validation. The decline in
performance of complex linear-based models in the yearly
cross-validation is exemplified in the most complex linear-
based model, GAM 3. Tree-based models consistently outper-
formed GLMs and GAMs in k-fold cross-validation. Linear-
based and tree-based models performed similarly in weekly
and yearly cross-validation, though tree-based models were
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Predicting bycatch of Chinook salmon in the Pacific hake fishery using spatiotemporal models 7

Figure 2. Comparison of different models’ ability to predict the presence
of bycatch in hauls between 2014 and 2019. A higher area under the
receiver operating curve (AUC) is better. For information on individual
models, see Table 1. Models generally increase in complexity from left to
right. Avg 1 is the average of the ten models to the left of it. Avg 2
excludes model GAM 3.

Figure 3. Comparison of different abundance models’ ability to predict
the abundance of bycatch in hauls between 2014 and 2019 that contained
bycatch. A lower root mean squared error (RMSE) is better. For
information on individual models, see Table 1. Models generally increase
in complexity from left to right. Avg 1 is the average of the ten models to
the left of it. Avg 2 excludes model GAM 3. The RMSE values for GAM 3
in the yearly cross-validation set were cropped out of the plot because
they were orders of magnitude larger than the other values due to a
number of hauls with very high predicted bycatch.

generally slightly better. Increasing the amount of data in the
training set had little impact on model performance in the
weekly cross-validation set but improved performance in the
yearly cross-validation set. Model averages performed very
well overall, performing better than any single model in the
weekly and yearly cross-validation but not in the k-fold cross-
validation. Among the RF models, downsampling was help-
ful for time-series predictions, but SMOTE was the worst-
performing RF model for all cross-validation sets, suggesting
that imbalance was not problematic in our dataset or that the
synthetic data that SMOTE created did not adequately repre-
sent true data.

When comparing differences across fold-, week-, or year-
level metrics, differences in RMSE across models were not
significant at the p = 0.05 level according to Tukey’s HSD
test. However, for the AUC comparison, the models with the
highest AUC were often significantly different from those with

Figure 4. Comparison of different hurdle models’ ability to predict the
abundance of bycatch in hauls between 2014 and 2019. A lower RMSE is
better. For information on individual models, see Table 1. Models
generally increase in complexity from left to right. Avg 1 is the average of
the ten models to the left of it. Avg 2 excludes model GAM 3. RMSE
values for GAM 3 in the yearly and k-fold cross-validation sets were
cropped out of the plot because they were orders of magnitude larger
than the other values due to a number of hauls with very high predicted
bycatch.

the lowest, particularly for the k-fold cross-validation (Sup-
plementary Figures S25–S27). We noted that for GAM 3, a
small number of hauls were sometimes associated with unre-
alistically high predicted bycatch, resulting in high RMSEs for
the GAM 3 k-fold hurdle and yearly cross-validation (Figures
3–4, Supplementary Figures S25–S27).

Correlates of bycatch

Covariates in linear and tree-based models generally showed
similar patterns in our marginal effect plots (see supplemen-
tary materials). There were higher levels of bycatch at night
(Supplementary Figure S12), towards the end of the fish-
ing season (Supplementary Figure S13), at shallower fishing
depths (Supplementary Figure S15), in shallower water (Sup-
plementary Figure S16), in more anomalous ocean temper-
atures (Supplementary Figure S18), and in stronger down-
welling (Supplementary Figure S19). The spatial components
of the models (see supplementary materials) suggested much
higher bycatch in the Strait of Juan de Fuca and moderate in-
creases closer to shore in northern Washington and southern
Oregon/northern California (Supplementary Figure S5). The
models also suggested higher bycatch in the southwest cor-
ner of our study area, but there are relatively few hauls from
that area. Results from models fit to the full dataset can be
found in Supplementary Tables S1–S5. Supplementary Table
S1 includes information on overall model fit (e.g. % variance
explained), and Supplementary Tables S2–S4 contain informa-
tion about individual covariates (e.g parameter estimates and
significance, where appropriate).

Reduction in bycatch

Removing a small proportion of hauls that are predicted to
have the most bycatch had a large influence on the over-
all ratio of bycatch to hake (Figure 5). Using weekly cross-
validation on the GBT 1 model trained with 4 years of data, re-
moving just 1% of hauls reduced the bycatch-to-hake ratio by
20%. We show this model because it reduced the bycatch-to-
hake ratio the most in the temporal cross-validations, though
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8 P. L. Shirk et al.

Figure 5. The reduction in Chinook-to-Hake ratio achieved by removing
hauls that the full hurdle models predicted to have the most bycatch.
Only the GBT 1 model is shown. See supplementary materials for a
comparison of models. Note that training datasets in k-fold
cross-validation included a random subset of hauls across all 18 years in
the total dataset, whereas weekly and yearly cross-validation training
datasets included all hauls in the 4 or 12 years of training data.

results were similar for GBT 2, which also performed well.
Other models generally showed smaller reductions in bycatch
(∼5–15% reductions in bycatch when 1% of hauls were re-
moved; Supplementary Figure S22). Changes in the bycatch-
to-hake ratio were driven almost entirely by changes in by-
catch. Hake catch declined in direct proportion to hauls re-
moved (i.e. removing 1% of hauls reduced hake catches by
1%, R2 = 0.9996; analysis not shown), implying a lack of
correlation between hake catches and Chinook bycatch. The
hauls removed in these calculations were not uniformly dis-
tributed through time (more hauls were removed in some
years than others). When calculated on a yearly basis, the re-
ductions in bycatch-to-target ratio varied considerably, partic-
ularly for time-series cross-validation (Supplementary Figure
S24). In some years (e.g. 2015, 2019), all three methods of
cross-validation resulted in similar reductions in the ratio of
Chinook-to-hake, while in other years (e.g. 2017, 2018), the
relative performance of the different types of cross-validation
closely resembled that seen in Figure 5.

Discussion

Overall, the models we tested were effective at identify-
ing hauls with large amounts of bycatch. Fleet communica-
tion measures, bycatch quotas, and catch-share programmes
(Gilman et al., 2006; Somers et al., 2018; Holland and Mar-
tin, 2019) have already reduced bycatch levels, but we show
that further improvement may be possible. Using model-based
predictions to redistribute fishing effort from areas with high
expected bycatch to areas with low expected bycatch is bet-
ter than simply moving fishing effort away from areas where
bycatch is observed because the model-based approach helps
to avoid moving fishing effort to other areas of high bycatch
(Smith et al., 2021). This is congruent with other efforts to
model bycatch, which generally show that relatively minor
modifications to fishing effort are likely to result in large de-
clines in bycatch (Lewison et al., 2009; Otto et al., 2016; Stock

et al., 2020; Smith et al., 2021), and in some cases the modifi-
cations to fishing behaviour may be revenue neutral for fishers
(Otto et al., 2016). We note that the benefits of predicting by-
catch and adjusting fishing effort in response may not be con-
sistent across time. For example, when the bycatch-to-target
ratio was calculated on an annual basis, there was consider-
able variation across time, with much larger relative reduc-
tions in bycatch in some years compared to others (Supple-
mentary Figure S24). Thus, if forecasting is implemented, it is
realistic to expect that the results may vary.

Failing to account for temporal structure can lead to
an underestimation of prediction error, so we used tempo-
rally blocked cross-validation to test our models. As ex-
pected, models’ predictive ability declines the further into
the future they make predictions. When interpolating pre-
dictions in k-fold cross-validation, tree-based models out-
performed linear-based models by a substantial margin (at
least as measured by AUC), but when extrapolating predic-
tions with time-series cross-validation, the tree-based mod-
els performed only slightly better than the top-performing
linear-based model, and this was not statistically significant
when comparing across block-level cross-validation metrics
(Supplementary Table S5, Supplementary Figures S25–S27).
Becker et al. (2020) also found that their BRT model outper-
formed their GAM model in predicting the presence/absence
of cetacean species, but the same BRT model performed worse
at predicting future presence/absence. Similarly, Stock et al.
(2020) showed that random forests were more sensitive to
spatial extrapolation than some of their linear-based models
when predicting bycatch in west coast fisheries. More gen-
erally, the decline in predictive ability of tree-based models
when extrapolating results in space or time may be a result
of complex models being overfit to training data, though we
note that the linear-based models also had lower performance
when predicting further out in time. Overfitting can often
be reduced with careful tuning parameter selection, but this
will not guarantee better predictions of the future; it may
simply decrease the difference in predictive ability between
interpolations and extrapolations. To avoid deceptively op-
timistic estimates of models’ predictive ability, it is impor-
tant to design cross-validation schemes that accurately re-
flect the way in which models will be used to make pre-
dictions.

Model averages performed well, particularly for time-series
cross-validation, but were not better than the best individual
models. Overall, tree-based models outperformed linear-based
models (lower RMSE in testing data; Figure 4). GBT models
with and without DART performed similarly, particularly in
time-series cross-validation. However, we note that our study
compared models with both differing model structure (e.g. lin-
ear versus non-linear covariates) and modelling techniques.
Thus, we emphasize that both model structure and model type
can influence performance and that our study does not disen-
tangle them.

We chose our statistical methods to test the models’ predic-
tive accuracy. Therefore, we urge caution in using these mod-
els to determine the strength or statistical significance of the
relationships between individual correlates and bycatch (see
Tredennick et al., 2021, for an overview of different modelling
purposes and their limitations). Our methods do allow for use-
ful generalizations regarding individual correlates of bycatch,
particularly when validated by other studies finding similar
results.
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Our models generally agree that bycatch increases in
anomalous temperatures. The same trend has been observed
in other fisheries (e.g. bycatch of eulachon in the pink shrimp
fishery; Ward et al., 2015). However, in large temperature
anomalies, different models suggest different relationships,
with linear-based models suggesting more bycatch in warmer
temperatures and GBT models the opposite. Temperature is
likely affecting Chinook and hake differentially, with poten-
tially varying relationships through time and/or space. Otto
et al. (2016) did not find a relationship between SST and
the catch of one Chinook stock (a metric of Chinook dis-
tribution) in the Chinook fishery, but they note that fisher-
men use SST to help locate Chinook, so their small sample
sizes may have limited their ability to identify a relationship
between temperature and Chinook catch. In addition, pref-
erential sampling may result in differing apparent relation-
ships between salmon catches (or bycatch) and temperature
in targeted versus bycatch fisheries. In a much larger study
of the ocean distribution of Chinook, Shelton et al. (2020)
showed that different Chinook stocks have different relation-
ships between their ocean distribution and the SST anomaly,
and that those relationships can vary through time. Similarly,
Malick et al. (2020) found a spatially variable relationship
between adult hake distributions and subsurface sea tempera-
ture anomaly, with higher hake biomass off the coast of Wash-
ington and northern Oregon in cooler temperatures, but the
relationship weakens and potentially reverses off the coast of
southern Oregon and northern California. Therefore, the re-
lationship between temperature and Chinook bycatch in the
hake fishery is likely more complex than our linear models can
capture.

Over the most common hake fishing depths (100–400 m),
all models show decreasing bycatch with depth when other co-
variates are held constant at mean values (Supplementary Fig-
ure S15). That relationship could change for tree-based mod-
els with other combinations of covariate values. Otto et al.
(2016) found the maximum catch probability of a single Chi-
nook stock at ∼150 m, but the amount of Chinook caught
(given that some were caught) kept increasing with increasing
depth. In spite of this, the mean capture depth for the stock
was 72 m, suggesting that fishers target shallower depths. In-
deed, the average capture depths across the 23 Chinook stocks
reported by Otto et al. (2016) were all between 50 and 100 m.
Teahan et al. (Teahan et al., In Prep.) found that adult Chi-
nook were caught in the Chinook fishery at deeper depths in
warmer temperatures and in late summer, with vertical dis-
tribution also varying by Chinook stock and the amount of
upwelling. However, mean capture depths across stocks and
years in the targeted Chinook fishery were <25 m, so it is un-
clear whether any of these factors would increase Chinook
abundance at the depths common in the hake fishery.

Fishers have some agency to change when, where, and how
they fish, potentially altering bycatch in ways that our models
fail to incorporate. All potential reductions in bycatch sug-
gested by these models are based on the assumption that fish-
ers do not alter their behaviour in ways that are not already ac-
counted for in the models. For example, the models do account
for fishing location (and thus spatial bycatch avoidance mea-
sures that were in place when the data were collected) but do
not account for gear configurations, the use of bycatch exclu-
sion devices, or the use of test hauls to look for bycatch species
in an area before conducting longer hauls. Incentivizing fish-
ers to reduce bycatch is often very efficient, demonstrating the

effect that fishers’ choices can have on bycatch (Abbott et al.,
2015; Somers et al., 2018; Sugihara et al., 2018). Ultimately,
determining the amount of bycatch reduction these models
can facilitate would require real-world validation.

One limitation of our modelling approach is that we ex-
clude the first week of each fishing season from the calcula-
tions of model performance metrics. We do this to accommo-
date the weekly cross-validation but must acknowledge that
excluding the first week of the fishing season, which is one of
the busiest fishing weeks of the year in the hake fishery, po-
tentially limits the inference of our models. However, we be-
lieve that our models do reflect achievable reductions in Chi-
nook bycatch. From 2014 to 2019 (the years included in our
summary statistics), 9% of hauls (1868 of 20007) were in the
first week of a fishing season, but only 2.5% of bycatch was
in the first week (788 of 30804 Chinook). Thus, our results
(Figures 2 and 5) are relevant to 97.5% of the total Chinook
bycatch and to the parts of the season when there is more
scope to avoid bycatch (i.e. when bycatch ratios are higher).
Furthermore, both the yearly and the k-fold cross-validation
models provide some ability to predict bycatch in the first
week of the fishing season, albeit roughly half of their predic-
tive ability to reduce bycatch in later weeks (Supplementary
Figure S23).

There are three ways in which our models could be im-
proved to make them more useful to hake fishers and more rel-
evant to Chinook conservation. First, incorporating the catch
of hake into models would be an important step towards iden-
tifying areas that are not only likely to result in less Chinook
bycatch but are also likely to result in more hake catch. As
we noted earlier, switching to the ratio of Chinook-to-Hake
as the response variable in our models fails to take into ac-
count the absolute amounts of either species, which is criti-
cally important. An alternative would be to model hake in-
dependently of Chinook bycatch and combine the results of
both models, giving the expected absolute amounts of each
species and the ratio between the two. Second, our models fail
to account for costs to fishers associated with efforts to avoid
Chinook bycatch. Bioeconomic models that account for costs
(e.g. increased fuel, decreased hake) as well as benefits (i.e. de-
creased Chinook bycatch) would be useful in further expand-
ing the utility of our models. Third, effective Chinook con-
servation warrants the incorporation of stock-specific infor-
mation. Komoroske and Lewison (2015) identify uncertainty
in the population-level effects of bycatch as one of the pri-
mary impediments to understanding bycatch and its effects.
Currently, our models treat Chinook as a single population
(yet they are not), in which case less bycatch of Chinook is al-
ways preferred. However, different stocks of Chinook tend to
have different marine distributions (Satterthwaite et al., 2015;
Otto et al., 2016; Shelton et al., 2020), and genetic analysis in-
dicates that there are latitudinal patterns in the stock compo-
sition of Chinook bycatch (Moran et al., 2021). It is possible
that hauls with relatively large amounts of Chinook bycatch
have mostly fish from abundant Chinook stocks, while some
hauls with relatively small amounts of Chinook bycatch may
pose the largest threat to rare stocks. Identifying ways of re-
ducing the bycatch of rare stocks would provide considerably
more conservation value than do the results of our current
models.

In addition to these model improvements, there are a num-
ber of additional modelling approaches that could be eval-
uated for their ability to predict Chinook bycatch in the
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hake fishery. For example, if the binomial and positive com-
ponents of the hurdle model are not independent, using
the Tweedie distribution may be advantageous (Stock et al.,
2019). Tweedie models may also have the advantage of re-
ducing the unrealistic predictions noted above for a small
number of hauls. Similarly, zero-inflated Poisson and/or neg-
ative binomial models could also reasonably be applied to
these data. However, given that zero-inflated models often per-
form similarly to hurdle models in simulations, these mod-
els may not greatly improve predictive performance (Feng,
2021). In the context of linear-based models, additional in-
teractions between terms could be considered, both to im-
prove predictive ability and potentially to provide further
inference about potential drivers of bycatch. To help avoid
adding too many predictor variables when adding interac-
tion terms, LASSO regularization (Tibshirani, 1996) can be
used to perform automated variable selection. Our observa-
tion that tree-based models generally outperform linear-based
models may be at least partially attributable to the fact that
tree-based models can account for interactions. Thus, compar-
ing them with linear-based models both with and without in-
teraction terms could add additional insight about why some
models may do better at predicting bycatch. Finally, another
potential approach would be to use spatial time-series mod-
els based on latent Gaussian (Markov) random fields. Using
latent Gaussian random fields as spatial random effects al-
lows for forecasting, and this approach has shown utility in
modelling bycatch patterns (Yan et al., 2021), though it may
not necessarily outperform other methods like random forests
(Stock et al., 2020). Finally, neural networks have shown pre-
dictive promise in fisheries applications (e.g. Núñez et al.,
2018; Chen et al., 2021) and may also be useful in modelling
bycatch.

Identifying methods to reduce Chinook bycatch, especially
for threatened stocks, is likely to become even more impor-
tant in the future as salmon populations face a changing and
increasingly variable climate. In spite of conservation efforts,
many Chinook populations continue to decline, with nega-
tive consequences for ecosystems, fisheries, and fishing com-
munities. Though bycatch has not been identified as a primary
threat to any Chinook populations where it has been studied
(e.g. Witherell et al., 2002; Ianelli and Stram, 2015; NMFS,
2017; Cunningham et al., 2018), the regulation of harvest (in-
cluding bycatch) is an important management lever influenc-
ing ocean salmon survival. In addition, legal mandates to pro-
tect threatened species, rebuild overfished stocks, and mini-
mize bycatch mean that fisheries targeting abundant stocks
(e.g. hake) may be constrained by impacts on non-target
species like Chinook. Methods developed here could poten-
tially be applied to other fisheries; for example, the Bering
Sea walleye pollock (Gadus chalcogrammus) trawl fishery
shares many characteristics with the west coast hake fishery,
including the challenge of avoiding Chinook bycatch (Stram
and Ianelli, 2015). More broadly, some data-rich fisheries are
taking advantage of high-resolution environmental, tracking,
and fishery data to inform dynamic management strategies,
which show promise in reducing bycatch while maintaining
target catches (Hazen et al., 2018; Welch et al., 2019; Pons et
al., 2022). The approach presented here shows how observer
and environmental data, in combination with spatiotemporal
models, can be used to forecast bycatch at realistic timescales
that can enhance avoidance of a protected bycatch species
while minimizing opportunity costs for the fishery.
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